GYIG OpenIR  > 研究生  > 学位论文
高温高压下部分熔融岩石和岩石玻璃弹性波速研究
其他题名Studies of Elastic Wave Velocities on the Partially Melting Rocks and the Rock Glasses under High Temperature and High Pressure
蒋玺
2007-05-29
学位授予单位中国科学院地球化学研究所
学位授予地点地球化学研究所
学位名称博士
关键词高温高压 纵波波速 横波波速 花岗岩 角闪斜长片麻岩 石英α-β相变 部分熔融 玻璃 低速层
摘要人类对地球深部结构的认识主要依赖于天然地震的观测资料,高温高压下矿物、岩石和岩浆玻璃的弹性波速测量,是对野外地震波探测资料进行物质反演的重要依据,也为建立地球内部结构模型和地球动力学研究提供重要的实验数据。大量研究证实,高温高压下岩石的部分熔融将形成地震波低速层。然而,前人的研究中,多以岩石的纵波波速(Vp)测量结果来讨论区域地壳结构和低速层的成因,而且很少对实验过程中的中间产物进行观察分析。另一方面,由于玻璃在高温高压下具有特殊的弹性性质,一些科学家推测地球内部岩石的非晶质化也将导致地震波低速层形成。但目前这一推测尚缺乏充分的实验数据支持。为此,作者依托YJ-3000吨大腔体高压实验技术平台,利用脉冲反射法和透射-反射法,完成了: (Ⅰ)三江地区花岗岩和角闪斜长片麻岩在最高压力2.0GPa、最高温度1200℃下的纵波波速(Vp)和最高温度600℃下的横波波速(Vs)研究,并通过岩石物态变化过程中的取样实验,综合探讨岩石中矿物脱水、固-固相变、部分熔融对其弹性波速的影响。获得以下主要结论: ① 花岗岩和角闪斜长片麻岩的Vp和Vs随压力及温度的变化趋势基本一致。室温下岩石的Vp和Vs随压力升高而升高,岩石波速具明显的各向异性,而且其各向异性随压力增大到约0.5GPa后逐渐趋于一恒定值; ② 恒定压力下,岩石的Vp和Vs首先随温度升高近线性缓慢降低,当750℃ 950℃后,石英相变完成,岩石的波速由于熔体含量增加又快速降低; ③ 高温高压下岩石的Vp和Vs研究显示了对三江地区地壳结构一致的约束结果,即该区花岗岩主要分布在上地壳,而角闪斜长片麻岩从上地壳底部到中地壳底部均有分布,这一结果与前人利用Vp研究建立的该区地壳模型基本一致; ④ 在三江地区中上地壳高石英含量的岩石中,石英的α-β相变是地壳地震波低速层形成的主要因素,而随岩石中石英含量的变化,高温高压下岩石的部分熔融及岩石的波速各向异性也可能形成低速层。 (Ⅱ)化学成分从基性到酸性的7种岩石的熔体玻璃在1.0GPa和2.0GPa,最高温度1000℃下的Vp研究和最高温度730℃下的Vs研究。获得以下主要结论: ① 与岩石波速随压力增大而增大不同,室温、0.4-2.0GPa压力下,除两种基性岩石(正长辉石岩和粗面玄武岩)的熔体玻璃外,其它5种中酸性岩石的熔体玻璃的Vp均随压力增大而减小,而这7种玻璃的Vs全部随压力增大而减小。而且,玻璃波速随压力增加而异常降低的幅度随样品中SiO2含量的增高逐渐增大; ② 恒定压力下,随实验温度升高,各种玻璃的弹性波速缓慢降低。当温度高于玻璃转变温度Tg后,玻璃弹性波速的温度系数(∂V/∂T)增大约3倍以上; ③ 研究证实了一种新的地震波低速层成因模式,即上地幔岩石中如果含有超过10vol%的玄武岩玻璃,将会形成地震波低速层;假如下地壳基性岩石中中酸性非晶质体含量超过20vol%,也可能导致地壳低速层的形成。
其他摘要It is an important way for investigating the petrologic and petrophysical properties of lithosphere to compare the seismic data with the velocities of rocks measured under high temperature and high pressure. Geophysicists have paid more attention to the seismic low velocity zone (LVZ), because it usually is the source and the center of the geologic activity in earth’s interior. Scientists had proved it is an important reason for the LVZ that rocks are partially melted under high temperature and high pressure. In the previous works, the structure of crust and the LVZ were mostly investigated by measuring the compressional wave velocities (Vp) of rocks, but few studies were performed by analyzing the data of compressional and shear wave velocities (Vs). And few analyses were performed for the intermediate products during the experimental cycle. On the other hand, based on the special elastic properties of glass at high temperature and high pressure, some scientists presumed that the vitreous amorphization could account for the decrease in velocity in the LVZ. So the presumptions should be supported by the reliable experimental data. Here, author reports the studies on these issues above. In this work, all the measurements were carried out with the pulse reflection and the transmission-reflection method. 1. Wave velocities of the granite and the plagiogneiss, gathered in Sanjiang zone, China, were studied up to 1200 ℃ for Vp and up to 600 ℃ for Vs at high pressure, respectively. By analyzing the intermediate products during experimental cycle, elastic wave velocities of the rocks were discussed as functions of the dehydration, phase transition and partially melting. Some results were obtained as follows: (1) The variation of wave velocities with pressure and temperature are similar between the granite and the plagiogneiss. At room temperature, wave velocities of the rocks increase with pressure. Both Vp and Vs are anisotropic and the anisotropies vary with pressure up to 0.5GPa. (2) Under high pressure, the Vp of the rocks decreases slowly up to 750 ℃. As a result of the α-β transition of quartz, the Vp decreases quickly from 750℃ to 850℃, and then increases sharply from 850℃ to 950℃. Above 950℃, the Vp decreases quickly again because of the more melt in rocks. (3) It is concluded that, based on the studies for both Vp and Vs, the granite is located in the upper crust in Sanjiang zone and the plagiogneiss is distributed from the upper crust to the middle crust, which is consistent with previous work based on studies for Vp. (4) For the quartz-rich layer in Sanjiang zone, the α-β phase transition of quartz is the main reason for the LVZ. And it is also proved that partial melt in rock and the anisotropy of wave velocity can cause the LVZ in earth’s interior. 2. Investigations on seven types of glass, which were synthesized by quenching melted rocks range from basic to acidic in chemical compositions, were performed up to 1000 ℃ for Vp and 730 ℃ for Vs at 1.0GPa and 2.0GPa, respectively. The results are as follows: (1) It is different from rock, in which wave velocity increases with pressure, that at room temperature and from 0.4 to 2.0GPa, the Vp of most of the glasses decrease with pressure except the basalt glass and the pyroxenite glass, and the Vs of all the glasses decrease with pressure. The increasingly more-anomalous behavior occurs with increase in SiO2 content. (2) At high pressure, the velocities of glasses decrease slowly with temperature until the glass transition temperatures Tg, and then decrease at the faster rate. (3) From this work, a new mode for LVZ has been proven, which hold that above 10vol% basalt glass in lherzolite would cause the LVZ in upper mantle and the intermediate and/or acidic glass will also result in LVZ in lower crust if which is above 20vol% in basic rocks.
页数87
语种中文
文献类型学位论文
条目标识符http://ir.gyig.ac.cn/handle/352002/3298
专题研究生_研究生_学位论文
推荐引用方式
GB/T 7714
蒋玺. 高温高压下部分熔融岩石和岩石玻璃弹性波速研究[D]. 地球化学研究所. 中国科学院地球化学研究所,2007.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
10001_20041800651402(2393KB) 暂不开放--请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[蒋玺]的文章
百度学术
百度学术中相似的文章
[蒋玺]的文章
必应学术
必应学术中相似的文章
[蒋玺]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。